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EXECUTIVE SUMMARY 

Background: Uncertainty in Financial Systems 

Numbers play a central role in domestic and world financial systems. Computers are used to track 

accounts and transfers with numbers.  However, in many cases there are uncertainties about the values 

used because the source of information may be imperfect or fluctuate with time.  Knowing how to 

control errors and uncertainty is an advantage worth pursuing.    

This report demonstrates the superiority of Duals Arithmetic on the Black-Scholes Call Option model 

making further financial applications feasible.  In short, this application enhances financial decision 

making.  Implementation of Duals Arithmetic is recommended to increase the confidence level of 

financial decisions and minimize the need for uncertainty buffers. 

Better Uncertainty Calculation: Duals Arithmetic 

A new idea is to format all numbers to have two (dual) parts: a value and a multi-dimensional error 

vector.  The new basis for calculating with these dual numbers, Duals Arithmetic, has been developed by 

Professor Ronald LaFleur of Clarkson University and CertainError.  This report demonstrates the 

effectiveness of this new method compared to four other uncertainty calculation methods: Intervals, 

Monte-Carlo, Differentials and Chordals and two baseline-validation methods that do not calculate 

uncertainty: Traditional Arithmetic and Exact Arithmetic.   

A pilot example is the Black-Scholes model of Call Value vs. Time-to-Expiry (0 to 2 years) and Spot Price 

($80 to $120).   Three parameters are the Strike Price ($100), Risk-Free Rate (4%/year) and Volatility (2 

%/year).  Uncertainty is applied as 5% relative error (the balance of 95% confidence) on each of the 

five inputs and these propagate to the Call Value and Error of Call Value. 

Results 

Key performances reported are informational content, computation time cost, memory requirements, 

and where some methods fail.  Duals Arithmetic possesses the following advantages: 

1. Effective – Duals Arithmetic provides six times the information of Traditional Arithmetic 

requiring only 23% longer computational time.  Duals Arithmetic provides three times the 

information of the Monte-Carlo Arithmetic in at least 41% shorter computational time. Duals 

Arithmetic is better and faster 

2. Robust – Duals Arithmetic tolerates operations that crash the other methods.  The divide-by-

zero and square-root-of-negative problems occur near zero Time-to-Expiry and when the Spot 

Price is near the Strike Price.    Duals Arithmetic doesn’t fail 

3. Better uncertainty information – Duals Arithmetic has the lowest Error of Call Value, solves the 

dependency problem and creates an advantageous error-manipulation surface.  Gain knowledge 

4. Strategy – Duals Arithmetic automatically provides a multi-dimensional compass that directs 

tailoring of the error budget.  Duals Arithmetic increases your advantage 
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1. INTRODUCTION 

A well-known formula for calculating the value of a call option is the Black-Scholes model [1].  This 

model expresses the Call Value as the difference between the value of the option-to-buy and the value 

of the underlying stock.   In the original notation (Equation 13 from [1]) 

𝑤(𝑥, 𝑡) = 𝑥𝑁(𝑑1) − 𝑐𝑒𝑟(𝑡−𝑡∗)𝑁(𝑑2)

𝑑1 =
ln(𝑥 𝑐⁄ ) + (𝑟 +

1
2 𝑣2)(𝑡∗ − 𝑡)

𝑣√𝑡∗ − 𝑡

𝑑2 =
ln(𝑥 𝑐⁄ ) + (𝑟 −

1
2

𝑣2)(𝑡∗ − 𝑡)

𝑣√𝑡∗ − 𝑡

  

Here, x is the stock price, t is time, c is the strike price, t* is the maturity time, r is the risk free interest 

rate, v is the volatility, and N(d) is the cumulative normal distribution.   

Since the log function is used in the ‘d’ expressions, the stock price follows a log-normal distribution.  

There are alternative, but equivalent ways to write the Black-Scholes model to either enhance 

understanding or to provide easier computational implementation. Black&Scholes (1973) [1] cite 

Sprenkle (1961) who published a similar formula earlier.  Therefore the main novelty of Black&Scholes 

[1] was to provide a theoretical basis for persistent unknowns in earlier valuation formulas. 

The Black-Scholes model sets a range of variability using dynamic-like parameters such as Time-to-

Expiry, Risk-free Rate and the Volatility of the stock.   While the stock is thought to fluctuate randomly, it 

is expected to follow a log-normal distribution which means the potential change in price over a small 

time interval depends on the current price.  All of this is contained in the model yet there is always some 

doubt about its validity.  While it may be clear at the expiry date to exercise the option (or not), this 

definite decision is offset by the indefinite information considered at the earlier time when the option is 

written.   

A source of doubt or uncertainty is from the fact that the model does not capture everything that could 

occur once the clock starts ticking.  For example, the Black-Scholes model relies on a set of assumptions 

about the underlying stock’s behavior 

1. Risk-free rate – this is assumed constant over the life of the option 

2. No dividend – this adds to the value of the stock but is not used to make option decisions 

3. Random stock fluctuations follow a log-normal distribution or, equivalently, the log follows a 

normal distribution.  This ignores large changes due to rogue events. 

This is supplemented by assumptions about environmental mechanics such as freedom to buy and sell 

any amount of the stock, the option can only be exercised at maturity (European) and no-transaction 

fees or tax implications are considered when calculating the option value.  In any practical situation, it is 

not certain that the burden of each assumption is met.  But does this destroy the information yielded?  
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This report presents a study of different uncertainty arithmetics as they are applied to the same Black-

Scholes calculation of Call Value.  This includes popular methods such as Interval Arithmetic, Monte-

Carlo Arithmetic and Differential Arithmetic.  Two new methods, based on geometric arithmetic, 

Chordal Arithmetic (CertainError class 1) and Duals Arithmetic (CertainError class 2) are proposed to 

replace the popular methods and this forms a contest to determine which method is best.   These two 

methods are Patent Pending with future licensing from Clarkson University and applications 

development by CertainError.   

Each type of uncertainty arithmetic used calculates the same Black-Scholes cases and its performance is 

judged according to uncertainty information provided, memory requirements, computational speed and 

robustness.  To validate each uncertainty arithmetic as computer code, two benchmark methods, 

Traditional Arithmetic and Exact Arithmetic, are included.  Neither of these provide uncertainty 

information but give a baseline performance for memory requirements and computational speed. 

The second section poses the Black-Scholes model as a procedure of unary and binary operations.  This 

is done to provide common steps for calculating and allow easier conversion of the traditional 

operations to uncertainty arithmetics.  Section three then proposes the versions of number formats and 

arithmetic that define each method in the contest.  A novel approach is to interpret these methods not 

as just numerical in nature but also geometrical. 

Sections four through six provide the resulting performance measures of each uncertainty arithmetic.  

Section seven provides the details of the Black-Scholes surfaces of Call Value and Error of Call Value to 

assess the robustness of each calculation and to illuminate where results are similar to the past or novel.  

Due to the added information from the Duals Arithmetic, section eight is devoted solely to detail these 

results. 

The conclusion is that Duals Arithmetic is superior in many respects and should be implemented as a 

replacement for older uncertainty arithmetics or adopted for new applications.   
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2. CALCULATION PROCEDURE 

Modelling attempts to represent the stock and financing with a mathematical formula or set of 

instructions (a program) such that ‘what-if’ scenarios can be studied prior to committing to an actual 

option.  Calculations and numbers form a definite basis for decision making yet some degree of 

uncertainty must be considered.  The computational implementation relies on the following: 

1. Defining common terms that can be calculated once and used later 

2. Converting the formula to a series of binary operations 

Using these ideas, the following top-to-bottom procedure for a Call Value is used, as five specifications 

(in bold) and sixteen calculation steps that each have intermediate results leading to one final result. 

1. Specify Time-to-Expiry     

2. Calculate square root of Time-to-Expiry  = 

3. Specify Risk Free Rate    r 

4. Calculate rate for Time-to-Expiry   =r 

5. Calculate discount factor   D=exp(-) 

6. Specify Strike Price    K 

7. Calculate discounted strike price   P2=DK 

8. Specify Spot Price    P1 

9. Ratio Spot Price to Strike Price   G=P1P2 

10. Calculate natural logarithm of the ratio  H=ln(G) 

11. Specify Volatility     

12. Calculate volatility for Time-to-Expiry  = 

13. Calculate drift effect   a=H 

14. Calculate scatter effect   b=2 

15. Calculate high     d1=a+b 

16. Calculate low     d2=a-b 

17. Calculate probability of high   N1=N(d1) 

18. Calculate probability of low   N2=N(d2) 

19. Calculate high return    C1=N1P1 

20. Calculate low cost    C2=N2P2 

21. Calculate value of option   C=C1-C2 

A majority of these calculation steps are basic arithmetic (addition, subtraction, multiplication and 

division).  These are binary operations (two inputs).   The unary functions (exponential, square root, 

natural logarithm, cumulative normal distribution) can be implemented as series of basic arithmetic 

operations, using built-in functions or novel approaches such as trans-imaginary numbers in the Duals 

Arithmetic [2]. 

The above calculation procedure works using single numbers and Traditional Arithmetic.  It is not 

difficult to imagine that a unique Call Value, C, is calculated from a single case of five inputs.   
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3. INFORMATIONAL CONTENT – alternate numbers and arithmetic 

A deviation from an assumed-constant value for one of five specified inputs will change the resulting Call 

Value, C.  It is also possible that changing two inputs could either offset each other, keeping C constant, 

or compound to change C dramatically.  How these changes in the inputs affect the single Call Value 

illustrates how information propagates from input to output in the Black-Scholes model. 

Instead of applying a change to one input as a set of repeated calculations of C (using the 21 step 

procedure over-and-over again), another approach is to represent each input as a domain of values.  

This represents each input as two numbers, one being the baseline value (the center) and the other 

being the amount of potential variation in either direction (+/-) away from the baseline (the error).  This 

idea formats every input as a ‘dual number’ where the center and error are independently specified.  

The intermediate numbers and final answer, C, are also dual numbers. 

Every step of arithmetic in the 21 step procedure must be changed to respect both the center and the 

error [3].  A ‘method’ is defined as three items: the numbers represented in the data type, the 

arithmetic used to calculate with these numbers and the rendering of the answers for display.  The data 

type also formats geometric information as shown by the accompanying sketches.  There are a variety of 

approaches to uncertainty methods as follows:  

1. Traditional – Uncertainty is not calculated because each number remains a single number.  The 

idea of error is not addressed.  Traditional Arithmetic of addition, subtraction, multiplication and 

division is used along with built-in functions such as natural logarithm and exponential. 

 

 

 

2. Exact – The dual number is formatted for each input, as a center and error.  New arithmetic is 

also formatted as one of the methods listed below.  However, as a validation, the input errors 

are all zeroed such that the inputs are exact.  The label ‘exact’ is synonymous with ‘zero error.’  

Note that the error has to be formatted, and this is not the same thing as Traditional Arithmetic, 

yet the answers have to be the same to demonstrate validity. 

 

 

 

3. Intervals [4,5] – The error domain about the center is populated with a uniform grid of points 

and calculations are performed by evaluating all combinations of point calculations and then 

finding the maximum result and the minimum result.  The mid-point between the maximum and 

minimum is the result center and the result error is +/-  distance between center and the 

maximum and minimum.   The number of grid points chosen for each input is important.  For 

example if each input error is grided with 100 points, a calculation with two inputs evaluates 

10,000 points and calculation with three inputs evaluates 1,000,000 points. 
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4. Monte-Carlo [6] – The error domain about a center is independently populated with a randomly 

spaced sample of points.  Then each input is a data set of the same size and calculations are 

done point-by-point.  The result data set is of the same size as the inputs.  The result center is 

the mean value of the result data set.   The result error is the standard deviation of the data set 

scaled to a confidence interval using the cumulative student-t distribution (for example 95%) as 

a coverage factor.  The size of the random sample for each input is important. 

 

 

5. Differential  [7] – The center is evaluated first from the error-free inputs (only centers).   

Knowing the arithmetic operation, a partial differential is formulated for each input and 

evaluated using the centers.  Each of these centered-partial differentials is multiplied by its 

corresponding error input to get an error contribution.  The independent error contributions are 

combined using a Pythagorean sum, that is the contributions are squared, the squares are 

added over inputs and the square root of the total is the resulting error (root-sum-squared, 

RSS).   Basic arithmetic steps can be completed easily and form blocks for larger algorithms but 

this can introduce something called ‘the dependency problem.’  This problem can be reduced by 

substitution but the resulting larger formula can be difficult to treat with partial differentiation. 

 

 

6. Chordal [8] – An upper point for each input is obtained by adding the error to each center.  

Similarly, a lower point is obtained by subtracting the error from each center.  The input to each 

calculation step is coordinated to how it determines the upper or lower points for the result.  

This shadows the sensitivity of the output to each input.  For example, if subtraction is used, 

C=C1-C2, the upper point of the result C is determined by the upper point of C1 and the lower 

point of C2.   This typically gives the worst case error as the calculation is based on the bounds 

of error domains and the arithmetic is performed on a ‘flat’ geometry of scaled points.   

Implementation is made difficult when inputs appear more than once in a calculation step and 

sensitivity of output to inputs is cloudy.   

 

 

7. Duals [9] – The error for each input is formatted as a vector with dimension equal to the 

number of inputs.  For example, the Black-Scholes model has five inputs, therefore each input 

has a five-dimensional (5D) error vector.  Along with the center, each input of the Black-Scholes 

model is formatted as six numbers.  Therefore, while the Traditional Arithmetic has five 

numbers input and any one of the five methods described above (Exact, Interval, Monte-Carlo, 

Differential, Chordal) have ten numbers input (center and error for each input), the duals-
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arithmetic has thirty numbers input (five inputs with six numbers each).  This number format is 

used consistently for every operation and through the entire calculation procedure.  At the end, 

the Call Value has all five components of the error vector.  When reporting is needed, either all 

components are reported or a rendering process flattens this to an equivalent dual number that 

has one center and one error.    

 

 

In summary there are seven methods being considered as shown in Table 1.  These are distinguished by 

their numerical and geometrical content.    

 

Table 1 – Uncertainty Methods for the Black-Scholes Call Option Model 

Method 
Numbers 
for input 

 Numbers 
Formatted Geometry Practical Scope 

Traditional Arithmetic  1 5 NA Widely used, certain 

Exact Arithmetic 2 10 variety Validation 

Interval Arithmetic  2 10 Uniform grid of points Not dominant 

MonteCarlo Arithmetic  2 10 Random grid of points Dominant for difficult  

Differential Arithmetic 2 10 Local linearity Dominant for simple 

Chordal Arithmetic 2 10 Points CertainError class 1 

Duals Arithmetic  6 30 Points & error vectors CertainError class 2 
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4. MEMORY REQUIREMENTS 

While the Black-Scholes model is a good small example, larger applications require we know how the 

memory requirements scale-up.  The required memory for calculations can be categorized into what 

supports the number data type and the overhead that is necessary to support the arithmetic.  The Black-

Scholes calculation is performed on a looped 2D grid from a Time-to-Expiry axis and a Spot Price axis.   

This means the required memory has three parts: overhead, out-of-loop numbers and within loop 

numbers. The memory required increases with the density of the grid points on each axis as this 

determines the number of loop steps as shown in Table 2.  The general program is similar among all 

methods and provides memory management that frees memory when localized sub-calculations are 

completed.   This correctly assesses the memory requirements of each method. 

Table 2 – Memory Use for Uncertainty Arithmetics (in bytes) 

n, Number of Grid Points on Each Axis 1 11 21 31 41 51 

Traditional Arithmetic  264 1464 4264 8664 14664 22264 

Exact Arithmetic 680 2760 8040 16520 28200 43080 

Interval Arithmetic  680 2760 8040 16520 28200 43080 

MonteCarlo Arithmetic  680 2760 8040 16520 28200 43080 

Differential Arithmetic 680 2760 8040 16520 28200 43080 

Chordal Arithmetic 680 2760 8040 16520 28200 43080 

Duals Arithmetic (5D error vectors) 1712 8592 26672 55952 96432 148112 

 

Traditional Arithmetic requires a number format of just one field as it provides no uncertainty 

information.  Adding the error field to the number format doubles the memory requirement for the five 

inputs and any numbers calculated from them.  The Exact Arithmetic formats the error field but then the 

number is set to zero in the memory to validate the general program as any Exact results should match 

with the Traditional results.  The Duals Arithmetic for the Black-Scholes model requires that each 

variable have a format of six fields.    

The memory requirements are scalable according to formula that fits the table exactly (R2=1).  There are 

three formula, one for each group of Table 2 

𝑇𝑟𝑎𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑀 = 8𝑛2 + 24𝑛 + 232
𝐷𝑢𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝑀 = 16𝑛2 + 16𝑛 + 648

5𝐷 𝐷𝑢𝑎𝑙𝑠 𝑀 = 56𝑛2 + 16𝑛 + 1640

 

The constant number on the far right is the overhead memory that stays the same regardless of loop 

size.  The central term, proportional to grid density, is for out-of-loop number formatting.  Some 

numbers that feed into and out of a loop are indexed and sized proportionally to the number of loop 

steps.   The quadratic term is for in-loop number formatting.  The term is quadratic as there is one 

nested loop and both loops run n steps.  This term is dominant and is often the only consideration for 

memory demand.  In that regard, we see that general uncertainty arithmetic requires twice as much 
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memory as Traditional Arithmetic.   This is expected as each number was doubled in memory to 

simultaneously track error.  

The Duals Arithmetic requires seven times as much memory as Traditional Arithmetic.  This is more than 

expected for duals that retain just six number fields.  Why would this be?  The reason is that, like the 

other methods, the nested loops store a rendered dual number (two fields as a center and error).  But 

unlike the other methods, the nested loops for duals arithmetic also store the five independent error 

vector components.  The 5D error vector carries all the information that is needed and the magnitude is 

redundant information.  Therefore the in-loop memory for the Duals Arithmetic has a coefficient of 56 

instead of 48 so that the magnitude of the error vector is immediately available.    

These formulae determine required memory when scaling-up the uncertainty arithmetic.   For example, 

the American style and other option style operate on similar inputs with some additions but require 

more frequent calculations to update the numerical basis for decisions.   For any type of option that 

involves calculations with numbers, errors propagate to uncertainty information.   An outstanding 

question is how the memory resource, as a capital cost for calculating, provides beneficial information.  

The answer is especially important for Duals Arithmetic that provides much more information.   

One benefit is that the error is an indicator of the effectiveness of an algorithm.  This means, with 

constant input centers and errors, alternative algorithms can be judged according to the reported error 

components.  The 21 step procedure used to calculate the Call Value could be changed to another 

procedure with less number of steps and larger formula on some steps (substitution).  If the reported 

Call Value changes, then the uncertainty arithmetic being used has a ‘dependency problem.’     

The dependency problem is due to branching in the algorithm (the 21 step procedure has 6 branch 

points) and the use of arithmetic steps that render the output as a dual number of one center and one 

error.  An alternative algorithm can be defined to remove a branch but this usually results in larger 

formula with more inputs and more complicated form.  This becomes a challenge for the Differential 

Arithmetic that requires formula for sensitivity derivatives (differential calculus) derived prior to 

programming error propagation.  The Duals Arithmetic does not have the ‘dependency problem’ 

because errors are calculated algebraically (no calculus! ) in five-dimensions and this is carried through 

every calculation step to every output.   
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5. COMPUTATIONAL TIME COST 

Every program uses computer time.  In the world of finance it is best to have information before your 

competition and this advantage motivates faster computer software and hardware technology.  This is 

especially true of international finance where timing and transfer occurs between decentralized 

systems. 

An easy way to compare methods is to have a general program that has constant format and simply 

changes the number format and arithmetic that is used.  All cases would be run on the same computer 

hardware to even the playing field and lead to meaningful comparisons. 

For example, a line of computer code that subtracts two numbers could have the following text-based 

options, respecting three number formats (traditional, dual number and duals) and the chosen 

arithmetic.  The result is stored in the last of the four fields listed while the operation is specified by the 

first field and the order of the second and third field respects non-commutative operations such as a 

subtraction or a division 

1. TraditionalArithmetic [‘subtract’,C1,C2,C] 

2. ExactArithmetic [‘subtract’,C1Dual,C2Dual,CDual] 

3. IntervalArithmetic [‘subtract’,C1Dual,C2IDual,CDual] 

4. MonteCarloArithmetic [‘subtract’,C1Dual,C2Dual,CDual] 

5. DifferentialArithmetic [‘subtract’,C1Dual,C2Dual,CDual] 

6. ChordalArithmetic [‘subtract’,C1Dual,C2Dual,CDual] 

7. DualsArithmetic [‘subtract’,C1Duals,C2Duals,CDuals] 

It is easy to see the commonality of code format and that the distinct parts are easily changed by 

editing.  This is a shell code and the actual arithmetic is specialized within the shell. 

Due to the variability of computer clock rates, like a numerical experiment, the different arithmetic 

versions were run 100 times and the maximum, minimum, mean and standard deviation of run times 

were calculated.   A single run performs the Black-Scholes calculation on a 21x21 grid (441 cases) of 

Time-to-Expiry and Spot Price.  Table 3 shows the results of the run time tests with 3 significant figures. 

Run times for the Interval Arithmetic depend on the number of grid points used to populate the error 

range of each number.  The fastest time for interval arithmetic is the coarsest grid of just 3 points and 

this was used for runtime comparisons.   

Run times for the Monte-Carlo Arithmetic should depend on the number of random points used to 

populate the error range of each number.  The runtimes did not vary much between small cases of 2, 10 

and 100 random points.   The fastest case of 2 random points was used for runtime comparisons.   
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Table 3 Comparison of Run times for a Variety of Uncertainty Arithmetic 

RunTimes of Uncertainty Arithmetic MAX MIN MEAN STDev 

100 runs of a 21x21 Black-Scholes Surface  [sec] [sec] [sec] [sec] 

Traditional Arithmetic (only centers) 5.22 4.38 4.47 0.142 

Exact Arithmetic (zero errors) 5.54 4.89 4.99 0.125 

Interval Arithmetic (3 points per axis) 6.93 6.17 6.28 0.154 

MonteCarlo Arithmetic (2 instances per sample) 10.8 9.98 10.2 0.197 

Differential Arithmetic 5.95 4.89 4.98 0.158 

Chordal Arithmetic 5.98 5.08 5.17 0.154 

Duals Arithmetic (5D error vectors) 6.42 5.72 5.82 0.149 

 

One observation is that the mean runtimes are much closer to the minimum runtimes suggesting that 

the maximum runtimes are outliers or there is a skew in the distribution of runtime results.  However, in 

any one calculation it is not known which runtime will result and the maximum run time represents a 

conservative result for scaling-up uncertainty arithmetic for larger applications.   

The standard deviation shows how much the runtimes varied over the 100 run experiment.  Among 

cases that report uncertainty, the worst variation is the Monte-Carlo Arithmetic and the lowest variation 

is the Duals Arithmetic.  This is an indirect measure of consistency and utilization. 

The Traditional Arithmetic is the fastest as it is not burdened with computations of error numbers.  This 

can be used as a baseline to assess time-cost of calculating uncertainty.  The second fastest is the Exact 

Arithmetic that has error formatted and calculated but it is consistently held to zero error throughout.  

Any of the other methods must match the Exact Arithmetic when the input errors are set to zero.  

The Differential and Chordal Arithmetic take about the same amount of time (within one standard 

deviation) and are third fastest.   The next fastest is the duals-arithmetic.  Considering the memory 

requirements, the Duals Arithmetic was expected to be slower as more numbers have to be crunched.  

However, the error vector processing is accommodated without loops.  Loops increase the effective 

number of executed lines of code.   

The slowest methods are those using Interval and Monte-Carlo Arithmetic.  Comparisons were made by 

making these two methods the fastest they could be.   The lowest grid density on the Interval and the 

lowest number of random instances in a sample were chosen.  Generally these choices are not practical.  

However, increasing the number of random instances in the Monte-Carlo comes with a low increase in 

runtime.  But it is, by far the slowest method with the largest variation in runtimes.  The Interval 

arithmetic cannot be helped as better error representation requires a higher density grid to populate 

the error range of each number and this slows the computation greatly. 
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6. BENEFIT-TO-COST RATIO 

Considering runtime as a cost-of-computing and cost for the amount of time waiting-for-answers, the 

benefit gained is the information the calculation provides.  The Traditional Arithmetic provides a unit of 

1 piece of information.  Extending to dual numbers, the Interval, Monte-Carlo, Differential and Chordal 

Arithmetics each provide 2 pieces of information.  Finally, the Duals Arithmetic, provides 6 pieces of 

information. 

An ad-hoc measure of Benefit-to-Cost  (BCR) and computational effectiveness is the ratio of information 

to runtimes.  The runtimes are first benchmarked to the Traditional Arithmetic runtimes.   These are 

relative runtimes as costs shown in Table 4. 

 

Table 4 Comparison of Benefit-to-Cost Ratio for Uncertainty Arithmetics 

Benefit-to-Cost Ratio (BCR) Relative Information BCR 

from Table 2 Max Run time Run time     

Traditional Arithmetic (only centers) 1.00 1 1.0 

Exact Arithmetic (zero errors) 1.06 1 0.9 

Interval Arithmetic (3 points per axis) 1.33 2 1.5 

MonteCarlo Arithmetic (2 instances per sample) 2.07 2 1.0 

Differential Arithmetic 1.14 2 1.8 

Chordal Arithmetic 1.15 2 1.7 

Duals Arithmetic (5D error vectors) 1.23 6 4.9 

 

One run of a Traditional Arithmetic calculation provides 1 piece of information at the cost of 1 unit of 

relative run time.  If uncertainty was calculated by repeated use of the Traditional Arithmetic with 

variation of the inputs, each time the calculation is performed, 1 additional piece of information is 

gained at the cost of 1 additional time unit.  In this scenario, the BCR would remain constant as 1 and 

further scaling up of the code by reuse will not change the BCR.  There is no change in computational 

effectiveness. 

However, if we can develop arithmetic that provides more information in the same amount of time, or 

provide the same information in less time, then the BCR is greater than 1 and this is a measure of 

goodness.  In method shown in Table 4, the BCR is a combination of the cost of runtime and the benefit 

of information, both being different than the Traditional Arithmetic.  

The BCR for the Exact Arithmetic is less than 1 showing that it has lower performance than the 

Traditional Arithmetic.  The Exact Arithmetic does not provide uncertainty information as input errors 

are set to zero but since it is formatted, it is carried in the calculations.  This makes the run time slightly 

higher than Traditional Arithmetic but with no benefit.  The Exact Arithmetic is not practical and is only 

used for validation studies. 
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The BCR=1 of the Monte-Carlo Arithmetic verifies that it is equivalent to using Traditional Arithmetic 

over and over again.  The Monte-Carlo method is well-known and simple to use as a computer code of 

Traditional Arithmetic.  The code can be kept fixed inside a ‘black-box’ whereby inputs are varied 

randomly and outputs are processed using statistics.  This ‘black-box’ approach is simple to implement 

but does not offer any advantages on computational effectiveness. 

The most notable case is the Duals Arithmetic.  At a cost of about 23% on runtime, the method provides 

a five-fold gain in information compared to Traditional Arithmetic.  This fundamentally shows that the 

resulting gain in performance (BCR) is due to the sophistication of the mathematics used in the code, 

results that cannot be obtained by scaling or reusing any of the ‘lower’ arithmetic.  CertainError has 

developed tools specific to implementation of the Duals Arithmetic to address this software challenge.  

Since the BCR improvement from the Duals Arithmetic is primarily from the gain in information, a 

decision has to be made on how to use this information and take practical advantage of the benefit.    
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7. RESULTS FOR VARIOUS UNCERTAINTY ARITHMETICS 

To judge the added information that dual numbers and duals provide over traditional numbers, we need 

to look at sample results from the Black-Scholes model.  A set of representative inputs was used to 

investigate the different uncertainty arithmetic without being burdened by all possible cases.  Table 5 

gives the chosen sample values with prices around $100 and moderate rates. 

Table 5 – Example Input Parameters for Calculating with the Black-Scholes Model 

Inputs  Symbol Units Grid High Low Relative High 

      Number Center Center Error Error 

Time-to-Expiry  years 21 2 0 5% 0.1 

Spot Price S  dollars 21 120 80 5% 6 

Risk Free Rate r percent/year 1 4 4 5% 0.2 

Strike Price K dollars 1 100 100 5% 5 

Volatility Rate  percent/year 1 2 2 5% 0.1 

 

To show the effect of uncertainty, fixed errors correspond to 5% of the center value.  The grided 

parameters of Time-to-Expiry and Spot Price have errors based on the 5% applied to the maximums .    

In many studies, 95% is a common confidence level, meaning for future cases, we can expect 19 out of 

20 trials to be predicted.  The balance of this is 5%, meaning we expect predictions to fail in 1 of 20 

trials.  Considering error to be a failure-of-prediction, then a 5% relative error is suitable.  The 

alternative is to have enough data of past behavior to assess the error level.   However, the application 

of statistics to past data has limitations.  For example, the description of rogue events or outliers that 

occur and do not fit the usual pattern of behavior is an issue.  This remains a failure of statistics and a 

challenge to any new methodology. 

Validation is by multiplying the input errors by zero, such that uncertainty arithmetic reduces to the 

Exact Arithmetic and this should correspond to the Traditional Arithmetic. This was completed 

successfully by all methods, verifying one aspect of proper uncertainty programming. 

 

7.1. Traditional Arithmetic Results 

The first calculation is the Black-Scholes model with Traditional Arithmetic.  With no uncertainty 

information, there is only one graph, Figure 1 below, and this is the Call Value vs. Time-to-Expiry and 

Spot Price. 

There is a missing part of the surface at zero Time-to-Expiry caused by using straight arithmetic to 

calculate ‘a’ in Step 13 of the calculation procedure.  This shows one weakness in the Traditional 

Arithmetic – the divide-by-zero problem.  One way to fix this, is to not use an ‘exact zero’ as the lower 
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bound for Time-to-Expiry and instead use a small positive number near zero such as +0.01.  This is 

essentially introducing a degree of error to fix a problem. 

 

Figure 1 – Black-Scholes Model using Traditional Arithmetic 

From this baseline case, there are common results and interpretations (refer to Figure 1 above) that 

occur in most of the arithmetic cases. 

1. Call Value calculated for different grid points of Spot Price and Time-to-Expiry is plotted as a 

surface. 

2. Due to the variable ‘a’, calculated from an inverse of Time-to-Expiry, there is a divide-by-zero 

challenge at zero Time-to-Expiry and this is called the ‘critical edge’. 

3. With feature 2 above, the case where Spot Price equals the Strike Price is a challenge and this is 

called the ‘critical point’. 

4. At low Time-to-Expiry and low Spot Price, the Call Value surface touches or crosses the zero Call 

Value reference plane.   Cases above this plane define a region of profitability for the call option.   

5. Considering a premium to buy the call option, this shifts the reference plane (of feature 4 above) 

upward and reduces the cases that yield profit. 

6. The Call Value surface is not linear and has curvature in both directions.  The Call Value 

increases with increasing Spot Price but at different rates due to the surface curvature (hedge).   
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The next set of graphs are for methods using dual numbers and a variety of arithmetic types.  This 

extends each traditional number by attaching an error number to represent uncertainty. 

7.2. Exact Arithmetic Results 

Exact Arithmetic operates on a dual number that has zero error.   The error field is formatted but 

remains zero.  Figure 2 shows the resulting Black-Scholes surface for Call Value. 

 

Figure 2 – Black-Scholes Model using Exact Arithmetic 

 

This is identical to Figure 1 except now, by including an error number in the calculation, the divide by 

zero problem is reduced such that the surface panels at low spot price are complete and touch zero Call 

Value.  However, there is still a cut-out region around the remaining divide-by-zero problem when the 

Spot Price is equal to the Strike Price.  Theoretically this would be zero Call Value corresponding to the 

Figure 1 given by Black&Scholes [1] and the limit of zero Time-to-Expiry.   
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A second graph for the Error of Call Value surface is shown in Figure 3.  It is non-interesting as a flat 

plane of zero error for the Exact Arithmetic.  This confirms the calculation produces no error by itself 

and only propagates error from the uncertainty in the five input sources to the Call Value. 

 

Figure 3 – Black-Scholes Model Error using Exact Arithmetic 

 

  

80
90

100
110

120

0

0.5

1

1.5

2
-1

-0.5

0

0.5

1

E
rr

o
r 

o
f 

C
a
ll
 V

a
lu

e
 =

 e
C

  
[$

]
Black-Scholes Call Option Value, C with ErrorScale=1

Strike Price K = 100 ± 5  [$]
Risk Free Rate r = 4 ± 0.2  [%/year]

Volatility    = 2 ± 0.1  [%/year]  
1/2

Spot Price = S ± 6  [$]Time to Expiry =    ± 0.1  [years]



Uncertainty Arithmetics Applied to the Black-Scholes Model, R.S. LaFleur 
 

19 
 

7.3. Interval Arithmetic Results 

Interval Arithmetic has difficulty with the Black-Scholes model at the critical edge of near zero Time-to-

Expiry.  The reason is the square-root-of-negative problem produced from step 2 of the procedure that 

propagates to the ‘d’ calculations and causes failure of the normal distribution function.   To obtain 

practical results, the square-root-of-intervals function is equipped with a switch to not-report cases 

when the square-root-of-negative problem occurs.   However this is not an arithmetic operation but 

instead is a relational operation.   

The time-performance tests used the lowest grid density (3 points) for the intervals.  For the best 

detailed results, the interval grid density is increased to (100 points).    This means each binary operation 

has 10,000 calculated points to feed into the maximum and minimum and resolve the result dual 

number. 

 

Figure 4 – Black-Scholes Model using Interval Arithmetic 
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Figure 4 shows the Interval Arithmetic produces nearly the same Black-Scholes surface as Traditional 

Arithmetic.  However, the calculation fails not only at zero Time-to-Expiry, but also for the next time 

near zero.  This is worse than the Traditional Arithmetic as the Interval Arithmetic superimposed the 

error in such a way that near-zero positive numbers can change to negative or very near zero.   

There is also a slight ripple in the surface at low Time-to-Expiry and where Spot Prices are nearly equal 

to the Strike Price.   This ripple is caused by the error affecting the center calculations.  This means that  

uncertainty calculation is not a separate procedure that can be ‘done later.’  The error participates 

simultaneously with the center calculations and there is an interaction.  Furthermore, all of the 

uncertainty calculating methods except Differential Arithmetic have error that interacts with the center, 

just as we would expect the center value to influence the error through surface slope. 

 

Figure 5 – Black-Scholes Model Error using Interval Arithmetic 

 

Figure 5 shows the Black-Scholes surface for the Error of Call Value from the Interval Arithmetic.   This 

shows a large amount of error, about $32, at high Time-to-Expiry.  As the chosen Time-to-Expiry is 

reduced, the surface becomes a wave with a peak error where the Spot Price is equal to the Strike Price.  
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This bump is evidence of why there is a ripple on Figure 4 near the same case.  Interestingly, as the Spot 

Price deviates from the Strike Price (gain or loss), there is a rapid reduction in the error.   Due to the 

failure at the critical edge near zero Time-to-Expiry, we cannot tell if the surface touches zero error and 

the calculated Call Value becomes certain.   Overall, the errors are too high to consider the Interval 

Arithmetic acceptable. 

 

  

Summarizing Error of Call Value, common results and interpretations can be listed for Error of Call Value 

surfaces to be shown later. 

1. The Error of Call Value for different grid points of Spot Price and Time-to-Expiry is plotted as a 

surface. 

2. All methods except the Duals Arithmetic show a rapid growth of Error of Call Value as the Time-

to-Expiry shortens.   

3. All methods except the Duals Arithmetic fail the challenge of the critical edge near zero Time-to-

Expiry and the challenge critical point at zero Time-to-Expiry and Spot Price equal to Strike Price.  

This means those methods do not support the theory for very short Time-to-Expiry.  This may 

have an impact on using Black-Scholes European Style results to develop other ‘quicker-update’ 

option styles such as the American Style option. 

4. Some methods have regions of very large Error of Call Value and this indicates those methods 

are not practical for calculating the uncertainty of the Black-Scholes model. 
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7.4. Monte-Carlo Arithmetic Results 

The behavior of the Monte-Carlo Arithmetic follows a random process; therefore the results are not 

repeatable.  To obtain understanding, the number of samples to populate each input number’s error 

was increased to 100,000.  Both the Call Value and Error of Call Value surfaces are not smooth.   In 

addition, the errors are very large near the critical edge and critical point.  Therefore, the error plot is 

limited by cutting-off error values above twice the Strike Price – an outlandish amount of error.    

 

Figure 6 – Black-Scholes Model using Monte-Carlo Arithmetic 
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description of curvature starting on page 638 and the demonstration of hedged position starting on 

page 641 of Black&Scholes [1]). 

 

 

Figure 7 – Black-Scholes Model Error using Monte-Carlo Arithmetic 

 

Figure 7 shows the Error of Call Value surface for Monte-Carlo Arithmetic. The texture is due to the 
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baseline Strike Price. 
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7.5. Differential Arithmetic Results 

The Differential Arithmetic is sequential as it calculates the Call Value center without error first and 

follows-up with error propagation.   Figure 8 shows that the Call Value surface is similar to the Exact 

Arithmetic (error is formatted but is set to zero).   

 

 

Figure 8 – Black-Scholes Model using Differential Arithmetic 

 

This surface has a problem with the critical point.  This problem is not influenced by error calculations 
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center results established, the error calculation uses this information.   Figure 9 shows the Error of Call 

Value follows the common surface pattern.    

 

 

Figure 9 – Black-Scholes Model Error using Differential Arithmetic 

 

The critical edge at zero Time-to-Expiry is missing as the Differential Arithmetic cannot divide-by-zero.   

The scale of the Error of Call Value is similar to Monte-Carlo and less than the Interval Arithmetic. 

 

  

80
90

100
110

120

0

0.5

1

1.5

2
0

20

40

60

80

Spot Price = S ± 6  [$]

Black-Scholes Call Option Value, C with ErrorScale=1
Strike Price K = 100 ± 5  [$]

Risk Free Rate r = 4 ± 0.2  [%/year]

Volatility  = 2 ± 0.1  [%/year]  
1/2

Time to Expiry =  ± 0.1  [years]

E
rr

o
r 

o
f 

C
a
ll
 V

a
lu

e
 =

 e
C

  
[$

]



Uncertainty Arithmetics Applied to the Black-Scholes Model, R.S. LaFleur 
 

26 
 

7.6. Chordal Arithmetic Results 

The Chordal Arithmetic is based on the geometry of two points.  These two points typically span the 

range of errors for each number and create a two-track calculation.  This is similar to the Interval 

Arithmetic with two points on the grid, except now the maximum and minimum operations are not 

used.  Instead inputs for the chordals have to be coordinated to the operation being performed. 

 

 

Figure 10 – Black-Scholes Model using Chordal Arithmetic 
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Arithmetic, the Chordal Arithmetic fails at and near the critical edge.  This is because a negative error 

case is superimposed on a small positive center and the net chordal number is negative. 

 

 

Figure 11 – Black-Scholes Model Error using Chordal Arithmetic 

 

Similar to the Call Value, the results for Chordal Arithmetic for the Error of Call Value are similar to the 

Interval Arithmetic results.  Again the surface is truncated at and near the critical edge but the error 

scale is slightly lower than the N=3 interval results. 
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8. RESULTS FOR DUALS ARITHMETIC 

The Duals Arithmetic represents the center value as a scalar for a point and the error as an error vector 

of as many components (or dimensions) as there are inputs to a calculation.   This yields a sophisticated 

way to calculate error and provides results that are amenable to manipulation of error. 

8.1. Call Value and Error Magnitude of Call Value 

The first graphs reported are the rendered dual number as a center and an error.  Figure 12 shows the 

Call Value surface for Duals Arithmetic.   

 

 

Figure 12 – Black-Scholes Model using Duals Arithmetic 
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problems at the critical edge and critical point.   This is because the Duals Arithmetic is robust and can 

tolerate divide-by-zero (zero with error) and square-root-of-negative problems that normally cause very 

bad results or halt a calculation.  A distinct feature is the surface dips below zero in a region near the 

critical point.  Considering the premium, this will limit the profitability of the call option and, compared 

to Traditional Arithmetic, reduce the number of situations where one would decide to purchase a call 

option.  This is caused by the simultaneous influence of uncertainty on the center value. 

Figure 13 shows the Error of Call Value as the rendered magnitude of the 5D error vector.  The rendering 

is accomplished using a Pythagorean sum. 

 

 

Figure 13 – Black-Scholes Model Error Magnitude using Duals Arithmetic 

 

This surface shape is distinct from the other methods that have problems at the critical edge and critical 

point.   There is no evidence of problems except in the small region of zero Time-to-Expiry and low Spot 

Price where the surface has a small curl upward and defines a small, minimum error valley.  The key 

80
90

100
110

120

0

0.5

1

1.5

2
0

2

4

6

8

10

Spot Price = S ± 6  [$]

Black-Scholes Call Option Value, C with ErrorScale=1
Strike Price K = 100 ± 5  [$]

Risk Free Rate r = 4 ± 0.2  [%/year]

Volatility  = 2 ± 0.1  [%/year]  
1/2

Time to Expiry =  ± 0.1  [years]

E
rr

o
r 

o
f 

C
a
ll
 V

a
lu

e
 =

 e
C

  
[$

]



Uncertainty Arithmetics Applied to the Black-Scholes Model, R.S. LaFleur 
 

30 
 

feature is, instead of a ‘zero slope’ surface emanating from the critical point to longer Time-to-Expiry,  

the Duals Arithmetic provides a surface with Error of Call Value increasing with increasing Spot Price.  

The slope of this surface is a maximum at the critical point rather than the ‘zero slope’ from other 

methods.  However, this slope decreases away from the critical point and ultimately at high Spot Price, 

the uncertainty reaches a ceiling of about $8.   Compared to the other methods, this is a much lower 

uncertainty ceiling. 

There is also no rapid growth of error as Time-to-Expiry is shortened; the surface is relatively flat in the 

time direction.  However, at the extremes of Spot Price there are opposite trends of the Error of Call 

Value vs. Time-to-Expiry; one going up and the other going down over time.  This indicates an organized 

twist to the surface.  If the error magnitude is to be reduced, it appears that a Spot-Price below the 

Strike Price is favorable.  But Call Value is higher with Spot-Price above Strike Price.  In the context of the 

premium, there may be situations where profit is accomplished with lower error and higher certainty.  

There is a trade-off in the simultaneous use of both the Call Value and Error of Call Value surfaces.  

If this error ceiling and therefore, the overall scale of the Error of Call Value can be manipulated, then 

overall higher certainty can be provided.  The key is ‘how to manipulate the Error of Call Value.’  To do 

this, we have to look at how the five inputs each contribute to the overall Error of Call Value.  The only 

method that provides this information is the Duals Arithmetic.  To get this information from other 

methods would require a complete re-work or re-use of the calculation steps, increasing the runtime 

proportionally to obtain the sensitivity-to-input information.  
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8.2. Error Contributions by Duals Arithmetic 

The Duals Arithmetic represents every number as a center and a 5D error vector.  Since the center is 

included, there is a mechanism for simultaneous error calculation and center values are influenced by all 

five error vectors.  This provides a direct method for investigating sensitivity of Error of Call Value by 

using components of the final error vector. 

 

 

Figure 14 – Error of Call Value Due to Error of Time-to-Expiry using Duals Arithmetic 

 

Figure 14 shows the Time-to-Expiry component of the Error of Call Value follows a similar surface shape 

when compared to the Error of Call Value surfaces shown earlier for other methods.  However, the error 

scale is much smaller.  The surface shape suggests that the contribution from time errors is significant in 

the other methods.  But this information is not available in the other methods.  As Time-to-Expiry nears 

zero there are regions where this error vector component ‘does a 180’ changing from a positive 

direction to a negative direction as the Spot Price varies.  However, its contribution to the overall Error 

of Call Value will still be positive as the independent vector component is squared in the Pythagorean 

sum.   

80
90

100
110

120

0

1

2
-1

0

1

2

Spot Price = S ± 6  [$]

Black-Scholes Call Option Value, C with ErrorScale=1
Strike Price K = 100 ± 5  [$]

Risk Free Rate r = 4 ± 0.2  [%/year]

Volatility    = 2 ± 0.1  [%/year]  
1/2

Time to Expiry =    ± 0.1  [years]

 e
C

 [
$

] 
 f

ro
m

 e
  



Uncertainty Arithmetics Applied to the Black-Scholes Model, R.S. LaFleur 
 

32 
 

This surface is similar in shape to ‘Greek theta’ related to negative partial derivative of C with respect to 

time [10].  However the units of the Error of Call Value are in [dollars] while ‘Greek theta’ has the units 

of [dollars/year].  This connection suggests that the Duals Arithmetic is a way to automatically calculate 

‘Greeks’ and provides strategic information.   

Some similarities of components of the Error of Call Value vector can be noticed when compared to 

‘Greeks.’  Once a formula is known, such as the Black-Scholes model, one can proceed on a path of 

generating first, second and higher derivatives.  This is a straightforward use of differential calculus and 

well-known mathematics such as Series Expansion.  However, differential calculus relies on small 

differentials (theoretically zero errors applied to an algebraic expansion of differences) and this 

essentially assumes a local linear behavior.  On some level this ignores curvature (important for hedging) 

and motivates the next round of differential calculus.  On the other hand, Duals Arithmetic is not limited 

to small errors and uses geometric arithmetic rather than differential calculus.   

 

 

Figure 15 – Error of Call Value Due to Error of Spot Price using Duals Arithmetic 
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Price to the Error of Call Value is due in part to the slope of the Black-Scholes surface of Figure 13, slope 

of the surface in Figure 15 gives some indication of curvature.  Similar to the ‘Greek theta,’ this surface is 

similar in shape to the ‘Greek Delta’ related to a partial derivative of C with respect to S.  However, Delta 

is unitless, representing a potential, while the Error of Call Value has the units of [dollars], representing 

the error that would be realized in money units. 

The curvature (related to the ‘Greek Gamma’) establishes a hedging strategy by generating a difference 

when +/- deviations in Spot Price are compared  (see the demonstration of hedged position starting on 

page 641 of Black&Scholes, [1]).  However, there is more information in Figure 15 than just slope and 

curvature due to Spot Price.   Each vector component of error has the ability to communicate many 

effects that accumulate through the calculation.   

The Spot Price appears in three places in the procedure and each of these affects the results differently.  

Since the Duals Arithmetic solves the ‘dependency problem’, it is the only method discussed in this 

report that correctly accounts for error from a ‘multi-pronged’ input.  This is enabled by representing 

error as a multi-dimensional vector and this suspends the rendering process normally used in other 

methods.   

 

Figure 16 – Error of Call Value Due to Error of Risk-Free Rate using Duals Arithmetic 
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Figure 16 shows the contribution of the Error of Risk-free Rate on the Error of Call Value.   The amount 

of error from the rate-error is very small (cents on the $100).  It also is highest at the beginning time 

period of the call option and diminishes, becoming zero at the exercise time.    This means a small 

uncertainty in the risk-free rate does not have much effect on the Call Value.  However, the Call Value 

does change significantly if the Risk-free Rate (the center, not error) changes and all else is held fixed.  

This is built into the Black-Scholes model as shown by discount factor for the Strike Price and influence 

on the probability-drift of the fluctuating prices. This surface is similar in shape to the ‘Greek rho’ related 

to a partial derivative of C with respect to r.  However, the units do not match and the Error of Call Value 

is in [dollars].  This verifies the relative unimportance of variation of Risk-free rate on Call Value pricing. 

 

 

Figure 17 – Error of Call Value Due to Error of Strike Price using Duals Arithmetic 
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Uncertainty in the Strike Price is calculated when the option is being considered and is also subject to 

the discount factor.  Figure 17 shows a negative error vector contribution to Error of Call Value.  Its 

largest contribution is at higher Spot Prices.  This means the higher the expected Spot Price the more 

uncertain it becomes due to Strike Price uncertainty.  The time-dependency of this surface is not great 

but has an interesting curl-toward-zero at low Spot Price.  This may be the reason for the $1 curl 

observed on the Error of Call Value surface shown in Figure 13 that occurs when other error vector 

components become small at near zero Time-to-Expiry and low Spot Price.   

 

 

Figure 18 – Error of Call Value Due to Error of Volatility using Duals Arithmetic 
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error has to Error of Call Value.  This surface is similar in shape to the ‘Greek Vega’ related to a partial 

derivative of C with respect to sigma.  However, the units do not match and the Error of Call Value is in 

[dollars].  This verifies the relative unimportance of variation of Volatility on Call Value pricing. 

 

8.3. Error Budget by Duals Arithmetic 

The rendered error for the Duals Arithmetic is the magnitude of the 5D error vector.  Similar to other 

methods, this yields a dual number.  However, the magnitude does not capture the contributions from 

each input.  Examining the five contributions provides a basis for understanding major and minor 

contributions.   This understanding can be turned around to manipulate the contributions and reduce 

the uncertainty in the Black-Scholes model. 

Normally the contributions to an arithmetic sum can be judged according to the total.   

𝑇 = 𝑐1 + 𝑐2 + 𝑐3 + 𝑐4 + 𝑐5 

For example, each contribution can be divided by the total to get a relative contribution indicated by 

percent.  This makes it easy to judge the contributions as the total of the relative contributions has to be 

100% and these can be plotted as a pie chart with five slices adding to the whole 

1 =
𝑐1

𝑇
+

𝑐2

𝑇
+

𝑐3

𝑇
+

𝑐4

𝑇
+

𝑐5

𝑇
 

The problem with contributions to the error vector is that this equation does not apply directly.  Instead, 

the total is calculated using a Pythagorean sum such as (the point equation with uniform signatures) 

𝑉2 = 𝑣1
2 + 𝑣2

2 + 𝑣3
2 + 𝑣4

2 + 𝑣5
2 

With the contributions, c, and total, T, defined as squared values, then the relative contributions add to 

100% and a pie chart can be plotted to judge major and minor contributions. 

1 =
𝑣1

2

𝑉2
+

𝑣2
2

𝑉2
+

𝑣3
2

𝑉2
+

𝑣4
2

𝑉2
+

𝑣5
2

𝑉2
 

 

One problem is that, when squaring, small components become relatively smaller and larger 

components become larger.  This distorts the ‘linear’ contributions represented in the multi-dimensions. 

This approach forms an ‘error budget’ showing the five contributions.  It does not matter if an error 

component is +/- as the square is always positive.  This error budget and a corresponding pie chart exist 

at every case of Spot Price and Time-to-Expiry.   Instead of looking at 441 pie charts, a survey of just four 

charts, one from each of the four corners of the grid, are shown.  These are labelled by the paired points 

(Time-to-Expiry, Spot Price) = (0, 80), (0, 120), (2, 80) and (2, 120) and the relative contributions are 

rounded to whole numbers. 
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Figure 19 – Error Budget for Corner (0, 80)   Figure 20 – Error Budget for Corner (0, 120) 

 

 

  

Figure 21 – Error Budget for Corner (2, 80)     Figure 22 – Error Budget for Corner (2, 120) 
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quantitative way to assess what is needed and its potential impact.   Once the call option is written and 

purchased, the stock price variation becomes ‘natural’, subject to free and controlled market forces.  

However, the Black-Scholes model is intended to simulate these future changes using the risk free rate, 

volatility and log-normal distribution from a random process.  There are always effects that do not 

follow the Black-Scholes theory and the uncertainty may bookend the range of expectations. 
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The Strike Price is the second largest contribution.  Similar to the Spot Price, higher certainty of the 

Strike Price directly benefits the Call Value.   The Duals Arithmetic shows that Strike Price error is 

important to reduce, but not as important as Spot Price error. 

The Error of Risk Free Rate has very little contribution to the Error of Call Value and rounding essentially 

zeros its contribution compared to the Spot Price and Strike Price.  The Duals Arithmetic provides the 

knowledge that exact information on the Risk-Free Rate is not necessary and the Black-Scholes 

calculation could be simplified by holding the Risk-Free Rate as an error-free number and using a 4D 

error vector in the Duals Arithmetic. 

The Error of Time-to-Expiry generally has a very small contribution to the Error of Call Value.  However, 

near zero Time-to-Expiry and at low Spot Price its contribution becomes dominant over all other 

contributions.  This rapid change in the contribution is due to Spot Price and Strike Price errors 

becoming zero for those cases, allowing the Error of Time-to-Expiry to emerge. 

The Error of Volatility is a minor contribution to the Error of Call Value.  At long Time-to-Expiry and low 

Spot Price, there is a small contribution.  However, the only significant contributions for those cases are 

the Error of Spot Price and Error of Strike Price and those are nearly the whole of the Error of Call Value.  

Some reduction in the Error of Volatility is beneficial but has a small impact.  Note that Volatility and 

Error of Volatility are distinct quantities.  Reducing Volatility means the Stock Price is more stable over 

time.  This means the stock is less risky but also has less opportunity for gains.  Reducing the Error of 

Volatility means there is more certainty in the value being used to specify Volatility.  The error is a 

measure of the quality of the information about Volatility.  Any use of statistics on past data may have 

to be re-derived using the uncertainty number formats.  For example, the formulas for mean and 

standard deviation have to be updated to handle dual numbers and duals. 

 

8.4. Utilization of Error Calculated with Duals Arithmetic 

Overall, there is a multi-dimensional recipe that can be derived based on the ranking of error 

contributions in the order of importance: 

1. Error of Spot Price 

2. Error of Strike Price 

3. Error of Time-to-Expiry 

4. Error of Volatility 

5. Error of Risk-free Rate 

Changes on the above listed errors have to be taken in context with the centers as this determines the 

location on the Black-Scholes surface graphs.  With this extra information, a utilization process would 

include algebraic combinations of the Call Value (center) and Error of Call Value components.  Such 

algebraic formulas would connect surface graphs that have been shown.  For example, the Call Value 

(Figure 12) can be connected to the large contributor, Error of Call Value due to Spot Price (Figure 15), 
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that parallels the surface shape of ‘Greek Delta’.  This would illuminate trade-offs for profitability of the 

call option and the components of risk from the uncertainty or error propagations. 

One example is to interpret the contributions to Error of Call Value as a thickening of the Call Value 

surface shown on Figure 12.  This idea is based on the superposition principle that applies the +/- as 

local up and down deviations of the exactly-thin Black-Scholes surface of Figure 12.  Then the Error of 

Call Value on Figure 13 is superimposed on the Figure 12 surface to obtain a new graph that is a Thick 

Black-Scholes surface.  This is one way to interpret the error.  To use the five-dimensional error vector 

requires that we have an idea about what ‘thickness’ means for a five-dimensional object.  For example, 

if someone wants to measure the thickness of a cube-like three-dimensional object, there are three 

possible answers.  The ability to flatten or render the error vector to a single magnitude helps view it but 

also does not contain every bit of information the Duals Arithmetic provides. 

Since the Duals Arithmetic does not use statistical concepts such as mean, standard deviation or error 

distributions, there is no preference for the Call Value location within the thickness of this new surface.  

There is no peak on a distribution or tails of the distribution because there is no distribution.  The center 

is not a magnet that dictates any peak in a distribution; when it comes to error, one has to discard the 

idea of the distribution.   

Why is discarding the distribution a good idea?   The idea of descriptive statistics is to generate single 

numbers (moments) to represent a data set.  For example, the mean value is determined by a centrality 

condition that solves the most-central-datum as indicated by the minimum variance relative to a 

uniform datum.   The problem with this is that many data sets contain outliers or rogue events and 

distributions are meant to show centrality or modality in the data set.   Clinging to the ‘statistical idea’ 

means we either have to ignore these rogue events or try to comfort ourselves into believing that they 

are rare and our model formulas deal only with a trend that fits the theory.  The problem is these events 

do happen and are not rare [11].  After an event happens, the traditional statistics are not equipped to 

describe what happened.  As mentioned earlier, instead of being a source for uncertainty analysis, 

statistics is an application for Duals Arithmetic and formulas have to be updated to handle Duals number 

format and Duals Arithmetic. 

The Duals Arithmetic does not use statistical concepts but relies instead on error sourcing for every 

number and conversion of the currently-used algorithm.   The Duals Arithmetic uses algebra and not 

differential or integral calculus that depend on the assumption of small error.  Consequently, the Duals 

Arithmetic can represent a wide range of events.   Other methods can do this too but large error sources 

can grow and overwhelm the primary calculation.  For example, the Monte-Carlo Arithmetic is not well 

behaved and requires careful implementation, such as using a very large sample size.  A system that is in 

transition due to a rogue event is similar to this error-growth.  In the transition, past behavior becomes 

less important until an entirely new regime of behavior unfolds.  The Duals Arithmetic reports the 

smallest Error of Call Value and therefore any growth of error is due to the modelled behavior rather 

than a by-product of poor uncertainty arithmetic.   
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9. CONCLUSIONS 

Conclusions are drawn according to the implementation and performance of five uncertainty 

arithmetics:  Interval, Monte-Carlo, Differential, Chordal and Duals.  These are validated using Exact 

Arithmetic and Traditional Arithmetic. 

The use of memory, although a capital cost, provides the benefit of information.  All uncertainty 

arithmetics using dual numbers have the same memory requirements-double that required for 

Traditional Arithmetic.  A more advanced method, Duals Arithmetic, requires six times the memory 

requirements as Traditional Arithmetic.  But this increased information provides details on the 

contributions to Error of Call Value and a basis for manipulating the error budget.  All of the uncertainty 

arithmetics except Differential provide error calculations in parallel with the center (primary) calculation 

and this means they are simultaneous.  Only the Duals Arithmetic reports all components of Error of Call 

Value simultaneously. 

The Black-Scholes model is a small pilot example and, based on this, formula were shown to calculate 

the memory requirements for scaling up to larger calculations. 

The fastest calculation is the Traditional Arithmetic but this provides no uncertainty information.  The 

runtimes of other methods were benchmarked to the Traditional Arithmetic to assess the cost of adding 

uncertainty calculation capability.   Relative runtime was defined as the runtime divided by the 

Traditional Arithmetic runtime.  The multi-point methods of Intervals and Monte-Carlo were the slowest 

to run.  The Duals Arithmetic was third slowest. 

 A benefit-to-cost ratio (BCR) was defined as information divided by relative runtime.  As a reference 

case, running Traditional Arithmetic a second time with perturbed inputs is a way to obtain an 

uncertainty calculation.  While this doubles the information, the runtime is doubled and the BCR is 

constant.   The Duals Arithmetic has the highest BCR mainly due to the greater amount of information 

provided in a slightly slower speed.  But Duals Arithmetic also had a smaller variance in runtime making 

a better case for scale-up to larger problems.  Monte-Carlo Arithmetic was the worst BCR as it is slower 

than all other arithmetics and provides the same information as the other methods (except Duals) and 

also had a great amount of variance in the runtimes making scale-up more difficult to project. 

Many uncertainty calculation methods are not applicable over the defined range of Spot Price and Time-

to-Expiry.  In particular the critical edge near zero Time-to-Expiry causes failures in the calculations due 

to either a divide-by-zero problem or a square-root-of-negative problem.  Only the Duals Arithmetic is 

fully robust, allowing calculations at the zero Time-to-Expiry edge and Spot Price-equal-to-Strike Price 

point on this edge.  The reason is Duals Arithmetic allows a divide-by-zero-dual, as the defined ‘zero 

dual’ has a zero center (hence the name ‘zero’) but a non-zero error vector.  The square-root-of-

negative that occurs in the presence of Error of Time-to-Expiry near zero Time-to-Expiry is also solved 

using the closure-signatures feature of the Duals Arithmetic. 

All uncertainty arithmetics except the Duals Arithmetic calculate errors that are too large and invalidate 

use of the Black-Scholes calculations.  However, since the fundamental model equations are common 



Uncertainty Arithmetics Applied to the Black-Scholes Model, R.S. LaFleur 
 

41 
 

among all methods and the Duals Arithmetic results are acceptable, this shows that it is the poor 

uncertainty arithmetic in other methods that is to blame.  The Black-Scholes model is always in doubt 

due to adherence to theoretical assumptions. The specification of numbers for input is a form of 

assumption, that is, we assume we know the number being input.  The use of dual numbers allows the 

possibility that we do not know the inputs exactly at every moment and permits a range of possible 

values for inputs.  With dual numbers and appropriate arithmetic, the calculation is run once and 

uncertainty is calculated.  This is a better alternative to re-running Traditional Arithmetic in a ‘black-box’ 

with varied inputs. 

Once Error of Call Value is known, it can be used in decision making to obtain higher certainty.  

However, some methods are not cast-in-stone and the error information yielded can be manipulated.  

For example, the Interval Arithmetic and Monte-Carlo Arithmetics can be improved by chosing a larger 

number of points that superimpose error instances on inputs.  Other methods such as Differential 

Arithmetic and Duals Arithmetic have no parameters and give one consistent answer.  However, the 

error answers for the Differential Arithmetic deteriorate as error grows and locally linear regions cannot 

fit curvature.  The Duals Arithmetic is algebraic and stays consistently good as error grows. 

A strategy of error reduction and lowering uncertainty requires knowledge about the sources input and 

how they contribute to the Error of Call Value.  Methods using dual numbers force all error inputs into 

one output error for each operation.  Unless the operation is an unary function, this stamps out the 

identity of error that was input and it is difficult to discover the contribution of each input.  Additional 

calculations would need to be run, changing the role of each input error.  Duals Arithmetic formats a 

multi-dimensional error vector that is maintained at every step of calculation, evolving the contributions 

as the calculation proceeds.  The added memory is a benefit when contributions are easily identified 

from the error vector.  Knowing each contribution means a strategy can be employed to reduce overall 

error by watching its components.   

The Error of Spot Price has the largest contribution and this would be an effective place to start.  The 

surface shape is important as it dictates the potential decrease of error.   The Error of Risk-free rate has 

a very small contribution and is waste of effort to reduce.  The same can be said of Error of Volatility.   

Although there are cases where these weights change, the low contributions remain true over the 

majority of the Black-Sholes surfaces.    

Based on this report, the new frontier of uncertainty calculations is based, not on numeric arithmetic 

but on geometric arithmetic.  The dual numbers are cast as scalars for geometrical objects and the 

arithmetic of addition, subtraction, multiplication and division has to apply to geometry.  Two geometric 

arithmetic methods, chordals (CertainError class 1) and duals (CertainError class 2) were demonstrated 

in this report and the Duals Arithmetic was found to be advantageous and superior on many fronts. 

Two additional methods, using multi-duals (CertainError class 3) and geoms (CertainError class 4) 

number formats utilize even more sophisticated arithmetic but provide higher fidelity in the error 

calculations and are suitable for applications where high certainty is critical.  These two methods are 

beyond the scope of this report. 
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